HFE mpx RealFast[™] Assay

ViennaLab Diagnostics GmbH Gaudenzdorfer Guertel 43-45 A-1120 Vienna, Austria Phone: (+43-1) 8120156-0 info@viennalab.com www.viennalab.com

1. Intended Use

The HFE mpx RealFast[™] Assay is a fast and accurate multiplex real-time PCR based test for the simultaneous detection of the H63D and C282Y mutations in the HFE (High Fe) gene, which encodes an atypical MHC class I molecule. These missense mutations are associated with the most common type of hereditary haemochromatosis (HH). The kit is designed to identify HH patients carrying an HFE H63D and/or C282Y mutation. The qualitative assay discriminates the three possible genotypes for each allele in a human DNA extract. Reference sequence: NG_008720.2 g.10633G>A; dbSNP: rs1799945 and rs1800562.

2. Introduction

HH encompasses a heterogenous group of inherited iron overload disorders with distinct underlying molecular defects and varying clinical symptoms. The cause for HH disorders is a relative deficiency of hormone hepcidin, which controls systemic iron levels by keeping plasma iron concentrations within the physiological range. Any disturbances in hepcidin regulators such as mutations in HH-genes like HFE, Transferrin receptor 2, Hemojuvelin, Hepcidin itself and/or Ferroportin 1 contribute to iron-related pathophysiology. Within this group mutations in the HFE gene account for the most common form of HH. Approximately 80% of HH patients are homozygous for C282Y and significantly fewer are compound heterozygous for the C282Y and H63D mutation. Homozygous carriers of H63D mutations typically show little increase in iron absorption and rarely develop HH.

Kit Contents 3.

Kit Contents		100 / 32 Rxn
RealFast [™] 2x mpx Probe Mix	1 vial 🗌 white cap	1000 / 320 µl
HFE mpx Assay Mix	1 vial purple cap	550 / 550 µl
HFE mpx WT-Control	1 vial green cap	75 / 75 µl
HFE mpx MUT-Control	1 vial F red cap	75 / 75 µl

The kit contains reagents for 100 / 32 reactions in a final volume of 20 µl each.

4. Storage and Stability

The HFE mpx RealFast[™] Assay is shipped on cooling blocks. On arrival, store the kit at -20°C. Alternatively, store at 2 to 8°C for short-term use within one month. The kit withstands up to 20 freeze/thaw cycles with no loss of activity. Avoid prolonged exposure to intense light. If stored correctly, the kit will retain full activity until the expiration date indicated on the label.

supplied with the kit.

5. Product Description

5.1. Principle of the Test

The test is based on the fluorogenic 5' nuclease assay, also known as TaqMan® assay. Each reaction contains two gene-specific primer pairs which amplify a 120 bp and 144 bp fragment of the HFE gene, as well as four dual-labeled, allele-specific hydrolysis probes which specifically hybridize to the target sequences of the amplified fragments. The proximity of the 5'-fluorescent reporter and 3'-quencher dye on intact probes prevents the reporter from fluorescing. During the extension phase of PCR the 5' - 3' exonuclease activity of the Taq DNA polymerase cleaves the 5'-fluorescent reporter from the hybridized probe. The physical separation of the fluorophore from the quencher dye generates a fluorescent signal in real-time, which is proportional to the accumulated PCR product.

HFE probe	Fluorophore	Channel
H63D mutant	FAM	520 nm
H63D wild type	HEX	556 nm
C282Y mutant	ROX	605 nm
C282Y wild type	Cy5	670 nm

In normal samples the wild type probes generate a strong fluorescence signal in the HEX or Cy5 channel and no or only a baseline signal in the FAM or ROX channel. Vice versa, in homozygous mutant samples the hybridized mutant probes generate a strong fluorescence signal in the FAM or ROX channel and no or only a baseline signal in the HEX or Cy5 channel. In heterozygous samples, both wild type and mutant probes bind to the amplicons and generate intermediate signals in the respective channels.

The RealFast[™]2x Probe Mix comprises HotStart Taq DNA polymerase and dNTPs in an optimized buffer system. The HFE mpx Assay Mix consists of HFE gene-specific primers and four allele-specific, duallabeled hydrolysis probes. Controls representing wild type (WT-Control) and homozygous mutant (MUT-Control) genotypes are

5.2. Real-time PCR Instrument Compatibility The HFE mpx RealFast[™] Assay is validated for use with the AB 7500 Fast instrument. The kit is compatible with various common real-time PCR instruments capable of recording FAM, HEX, Cy5 and ROX fluorescence:

- AB 7500 Fast (Applied Biosystems®)
- CFX96[™] (Bio-Rad)
- ✓ LightCycler[®] 480 (Roche)
- ~ MIC qPCR Cycler (bms)
- Rotor-Gene® 6000 (Qiagen)

» Note: RealFast[™] Genotyping QuickGuides for setting up and analyzing experiments on different types of instruments can be downloaded from www.viennalab.com.

The kit is not suitable for use with real-time PCR instruments requiring ROX for normalization of data (e.g. Applied Biosystems® instruments: StepOne[™], 7300, 7900/7900HT) or for instruments without appropriate fluorescence detection channels.

5.3. Assay Performance Specifications

Determination of sensitivity was performed on 60 H63D positive alleles and on 35 C282Y positive alleles, both tested with a CE-marked reference kit. The HFE mpx RealFast[™] Assay correctly determined all positive HFE alleles, which equaled a true positive rate of 100%.

Determination of specificity was performed on 118 H63D negative alleles and on 143 C282Y negative alleles, both tested with a CE-marked reference kit. The HFE mpx RealFast[™] Assay correctly determined 115 / 118 negative H63D and 143 / 143 negative C282Y alleles, which equaled a true negative rate of 98% and 100%, respectively.

Limit of detection: 0.2 ng genomic DNA (per reaction)

Recommended DNA concentration: 2 to 20 ng/µl genomic DNA

6. Materials Required but not Supplied

Real-time PCR instrument with FAM (520 nm), HEX (556 nm), ROX (605 nm) and Cy5 (670 nm) filters, instrument-compatible reaction vessels, disposable powder-free gloves, vortexer, mini-centrifuge for 2.0 ml tubes, tube racks, set of calibrated micropipettes (0.5 - 1000 µl), sterile tips with aerosol-barrier filter, molecular grade water, DNA extraction system, freezer, biohazard waste container.

7. Experimental Protocol

7.1. DNA Extraction

DNA extraction reagents are not supplied with the kit.

DNA isolated from various specimens (e.g. whole peripheral blood, dried blood spots, buccal swabs or saliva) can be used. Ensure extracted DNA is suitable for amplification in terms of concentration, purity and integrity.

For accurate genotype calling, the DNA amount per reaction should be within the range of 10 to 100 ng for all samples.

7.2. PCR Controls

Always include a No Template Control (NTC) in each experiment to confirm absence of potential contamination. It is advisable to run the NTC (use PCR-grade water instead of DNA) in duplicate.

Always include the HFE mpx WT-Control and HFE mpx MUT-Control as positive reference signals for your unknown samples. Some real-time PCR software, e.g. AB 7500 Fast, requires signals for all three possible genotypes for correct allelic discrimination. In order to obtain a heterozygous control (HET-Control), mix an aliquot of WT-Control and MUT-Control in a ratio of 1:1.

» Note: WT- and MUT-Controls are potential sources of contamination. Make sure to handle them carefully. «

7.3. Preparation of HFE mpx RealFast[™] Master Mix:

Gently vortex and briefly centrifuge all solutions after thawing. Set up PCR at room temperature. Prepare sufficient **Master Mix** for all your reactions (N samples + positive controls + negative controls) plus at least one additional reaction to compensate for pipetting inaccuracies:

Component	per reaction	e.g. 24+1 reactions
RealFast [™] 2x Probe Mix	10 µl	250 μl
HFE mpx Assay Mix	5 µl	125 µl
Master Mix	15 µl	375 μl

Dispense 15 μ I Master Mix into each well. Add 5 μ I purified DNA or Control template to reach a final reaction volume of 20 μ I. To minimize risk of contamination, always pipette templates in the following order: first NTC, then samples, last positive controls. Immediately close reaction vessels.

» **Note:** Avoid creating bubbles in the final reaction mix and avoid touching the optical surface of the cap or sealing film without gloves. Both may interfere with fluorescence measurements. Centrifuge briefly if needed. «

7.4. PCR Program

Program the real-time PCR instrument according to the manufacturer's instructions for allelic discrimination / genotyping experiments. Place the samples into the thermal cycler and run the following program.

	Program	l	AB 7500 Fast, CFX96 [™] , LightCycler [®] 480, and other Peltier heating-block based instruments	MIC, Rotor-Gene [®] 6000 (36-well & 72-well rotor)
Cycles	Temp	Time	Steps	Steps
1	95°C	3 min	Initial denaturation	Initial denaturation
	95°C	15 sec	Denaturation	Denaturation
40	60°C	1 min	Annealing/Extension – Data acquisition on FAM, HEX, ROX and Cy5 channels	Annealing/Extension – Data acquisition on Green, Yellow, Orange and Red channels

8. Data Analysis / Interpretation of Results

The genotype of each sample is determined by calculating the ratio between signals recorded in the **HEX** or **Cy5 channel (normal)** and signals recorded in the **FAM** or **ROX channel (mutant)**. Most real-time PCR software automatically resolves data of two channels into clusters in a scatterplot. Data points plotted along the x- and y-axes correspond to normal and homozygous mutant genotypes, respectively. Data points clustered in the middle of the scatterplot represent heterozygous genotypes. The NTC appears in the lower left corner.

Controls /	Amplification in channel			Constyne	
Samples	FAM	HEX	ROX	ROX Cy5 H63D / C282Y	
Samples	Green	Yellow	Orange	Red	H03D7 C2021
mpx WT-Control	NO	YES	NO	YES	normal H63D / normal C282Y
mpx HET-Control	YES	YES	YES	YES	heterozygous H63D / heterozygous C282Y
mpx MUT-Control	YES	NO	YES	NO	homozygous mutant H63D / homozygous mutant C282Y
NTC	NO	NO	NO	NO	
Sample 1	YES	YES	NO	YES	heterozygous H63D / normal C282Y
Sample 2	YES	NO	NO	YES	homozygous mutant H63D / normal C282Y
Sample 3	NO	YES	YES	YES	normal H63D / heterozygous C282Y
Sample 4	NO	YES	YES	NO	normal H63D / homozygous mutant C282Y

Some instrument software needs manual threshold settings for accurate genotype calling.

Recommendations for Threshold Settings (C_q):

Set threshold value for the FAM and ROX channels just above the background fluorescent signal generated by the WT-Control (HEX-/Cy5-positive). Vice versa, set threshold value for the HEX and Cy5 channels just above the background fluorescent signal of the MUT-Control (FAM-/ROX-positive).

Samples crossing the threshold line beyond Cq 37 give invalid results and must be repeated.

To analyze acquired data, please follow your instrument software instructions.

9. Warnings and Precautions

- For *in vitro* diagnostics only.
- Always use disposable powder-free gloves and wear suitable lab coat when handling specimens and reagents.
- Perform reaction setup in an area separate from nucleic acid preparation and PCR product analysis.
- Use pipettes dedicated for PCR setup only, use aerosol-guarded pipette tips.
- Use instrument-compatible reaction vessels with optically clear caps or sealers.
- Do not mix reagents from different lots.
- Do not use expired kits or kit components.